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On flow through furrowed channels. 
Part 1. Calculated flow patterns 

By IAN J. SOBEY 

Department of Engineering Science, Oxford University 

(Received 20 November 1978 and in revised form 12 April 1979) 

Bellhouse et al. (1973) have developed a high-efficiency membrane oxygenator which 
utilizes pulsatile flow through furrowed channels to achieve high mass transfer rates. 
We present numerical solutions of the time-dependent two-dimensional Navier- 
Stokes equations in order to show the structure of the flow. Experimental observations 
which support this work are presented in a companion paper (Stephanoff, Sobey & 
Bellhouse 1980). 

Steady flow through a furrowed channel will separate provided the Reynolds.num- 
ber is sufficiently large. The effect of varying the Reynolds number and the geometric 
parameters is given and comparisons with solutions calculated using the modern 
boundary-layer theory of Smith (1976) show excellent agreement. Unsteady flow 
solutions are given as the physical and geometric parameters are varied. The structure 
of the flow patterns leads to an explanation of the high efficiency of the devices of 
Bellhouse. 

~~ 

1. Introduction 
The Navier-Stokes equations of motion of a Newtonian fluid pose a problem of 

overwhelming analytic difficulty, In  the case of steady flows analytic solutions exist 
only for those flows in which the nonlinear terms either vanish or can be treated by 
linearization. When the fluid motion is unsteady, excepting situations in which the 
equations may be linearized, Iittle is known about the structure of the solutions as the 
physical and geometric parameters of the problem are varied. In  this paper we present 
details of the solution structure obtained by numerical experiments on a problem of 
great practical importance which nevertheless has a simple geometry: the extra- 
corporeal membrane oxygenator of Bellhouse et al. (1973). We have studied flow 
through this device both to understand the performance of the oxygenator and to 
determine the structure of solutions to the Navier-Stokes equations. Experimental 
observations which support this work are presented in a companion paper (Stephanoff 
et al. 1980). 

Of the many life-support devices available today heart-lung machines rank amongst 
the most important. In  cardio-pulmonary bypass some form of oxygenator is necessary 
to transfer oxygen into blood and remove carbon dioxide from blood. The simplest 
form of oxygenator is a bubble oxygenator in which oxygen is bubbled through a 
column of blood. Such devices have limited perfusion times because of damage caused 
to blood by direct contact between oxygen and blood. Longer bypass requires a 
membrane oxygenator in which blood is separated from oxygen by a microporous 

0022-1120/80/4346-7U90 $02.00 @ 1980 Cambridge Univerrrity Prew 

I FhM 96 



2 I. J .  Sobey 
- 2  mm---y 

- Blood 0.4 rnm 

FIUTJRE 1. Configuration of the Oxford membrane oxygenator. 

membran9. Typically the membrane thickness is of the order 40 pm with an exposed 
surface area of 3-54 m2 and prime volume 500 ml. 

The Oxford membrane oxygenator is built around channels formed by pressuring 
a membrane against a supporting structure and is shown schematically in figure 1.  
Blood is pumped back and forth through the channels with a small mean flow compo- 
nent. An oxygenator suitable for animal trials on lambs consisted of six channels of 
width 11.5 cm and breadth 20 cm (Bellhouse et al. 1973). The mean flow was 300 ml 
min-l and the effective peak volume flow could be as high as 4300 ml min-l. As there 
was a large mean pressure difference between the blood side and the oxygen side of the 
channels, small transient pressure fluctuations that would occur during the flow cycle 
would not be expected to cause significant movement of the membrane. The resistance 
of this device was approximately 1.1 times the membrane resistance. The simple two- 
dimensional geometry of the blood channels means that in considering the oxygenator 
we must study unsteady flow through a furrowed channel. The simplest approxima- 
tion is to assume that between the struts supporting the membrane the shape of the 
furrow is the arc of a circle. We seek to understand why such flows should generate 
high mass transfer rates through the membrane. 

If we consider the flow of a solute from one solvent through a membrane and into 
another solvent then, given the concentration between solvents and the mass flow 
rate, the resistance to mass transfer is the ratio of driving concentration difference to 
mass flow rate between the solvents. The resistance is made up of three components, 
the membrane resistance and the fluid resistance on either side of the membrane. The 
fluid resistance is caused by the development of concentration gradients near the 
membrane which effectively result in fluid far from the membrane seeing a thicker 
membrane than is actually present. Clearly the resistance to mass transfer will be 
reduced if the fluid near the membrane is well mixed with fluid far from the membrane. 
In  present membrane oxygenators the resistance is nearly all due to the fluid. 

The device of Bellhouse is important for blood because it is able to significantly 
reduce the fluid resistance without using turbulent flow, but rather by using unsteady 
laminar flow which will not damage formed elements in the blood. 

In  order to avoid considering the complicated problem of blood viscosity we shall 
assume that the fluid flowing through the channels is a Newtonian fluid. This assump- 
tion is supported by the following: 

(1) the channels are relatively wide (04-0-9 mm); 
(2) the flow is unsteady ; 
(3) lateral mixing will ensure that red cells are evenly distribu teci through the fluid. 
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The unsteady part of the flow dominates the steady part and we shall generally 
consider oscillatory flow although the influence of mean flow components is given 
in $5.  

Denote the channel half-width h, the peak velocity assuming a flat profile V,, the 
fluid viscosity v and the frequency of oscillation a. There are three interrelated para- 
meters which govern the flow, the pulsatile Reynolds number 

a2 = Qh2/v,  
the Strouhal number 

St = ah/&, 
and the peak Reynolds number 

Re = V, h/v. 

These are related by a2 = Rest. In  the Oxford membrane oxygenator the ranges are 
a2 = 0 ( 1 ) ,  St = 0(10-2) and Re = O(lO0). From a fluid-dynamic viewpoint the flow 
through the oxygenator is best characterized as a two-dimensional unsteady internal 
bluff-body problem a t  intermediate Reynolds number. There is little information in 
the literature dealing with this complicated flow regime. In  order to deal with this 
problem we have solved a finite-difference analogue of the Navier-Stokes equations of 
motion for a two-dimensional flow. We have used a standard stream function/vorticity 
formulation (Roache 1972) taking second upwind differences for the nonlinear terms 
and a two time-level Dufort-Frankel substitution for the time-dependent terms. The 
resulting solutions were calculated on a purpose-bought PDP 11-34 computer. Our 
main objective has been the solution of an otherwise intractable problem using well- 
known numerical techniques. 

In  3 2 we give mathematical details of the problem and the numerical formulation. 
In 3 3 we consider the steady flow through a furrowed channel, varying the Reynolds 
number and the geometric parameters. Solutions to the modern boundary-layer theory 
of Smith (1976) for internal flows are compared with solutions to the steady Navier- 
Stokes equations and excellent agreement is obtained under suitable circumstances 
including the size and positions of the separated region, a demonstration of the im- 
pressive power of modern boundary-layer analysis when dealing with steady flows. 
Studies of the unsteady problem are presented in $ 4  and application of this work to 
the design of mass transfer devices is given in $ 5 and our concluding remarks are in 
$ 6 .  

2. Formulation 

of infinit,e length whose boundaries are given by 

where f is a periodic function with 

Let (2, g) be a two-dimensional Cartesian co-ordinate system and consider a channel 

9 = f hf (P/h), 

for all 2. Suppose that f is a well-behaved function a t  least twice differentiable piece- 
wise. A fluid of kinematic viscosity v flows through the channel with flux Q (figure 2). 

Let 
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FIQTJRE 2. Geometry of a furrowed channel. 

where q is a function with period 2n, 1q1 < 1 and t" is the time. We define a channel 
velocity by 

V, = Qmax/h, 

and suppose (a, 8) are the velocities in the (2, Q) directions respectively. The vorticity 
Q is defined by 

We shall say that the flow is accelerating if q > 0 and q > 0 or q c 0 and q < 0; and 
that the flow is decelerating otherwise. The vorticity equation is 

o = aep2 - aapg. 

where 

I n  addition the continuity equation is 

aala2 -t. a e p j  = 0. 

These equations, together with the boundary conditions 

(a, G) 3 (0, 0) on 8 = +hf(2/L) ,  

and the condition that the flux is a given function of time, completely specify the 
problem. In order to obtain a finite-difference analogue we first transform the equations 
by means of the transformation 

x = 2/h,  

z = Q/~f(2/L), 
t = at", 

and the scaling 

where for convenience p(x)  = l/f (2). The vorticity is scaled 
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whence 

where 

The vorticity equation ia 
- _ - -  i ca(um) - +--+ , - (aw)]+2v2w,  p f z a ( m )  a 1 

at s t  ax p az az 

and the boundary conditions 

and 
$.I# =fl = f dt), 

$.a=$.z=O on z = + 1 .  

In  order to model these equations numerically we follow the philosophy of Gillani 
& Swanson (1976) and use a fine mesh near the wall z = 1 and a coarse mesh near z = 0. 
The problem is symmetric about z = 0 and we have a computational region 0 < z < 1 
and 0 < x < L. The boundary conditions a t  x = 0 and x = L are given by the periodic 
nature of the wall, 

and 

This is the only novel point from the numerical view. Usually some approximation 
is necessary in order to specify the entrance and exit conditions. Here no approxima- 
tion is involved: the calculation is iterated until the entrance and exit conditions 
match. 

The numerical technique used to solve the equations is well known and has been 
widely used. Essentially, if the field is known at time t ,  the vorticity equation is used 
to estimate the vorticity at a later time t + at, where 6t is a small time interval. A Poisson 
equation is then golved for the stream function at the new time and the procedure 
repeated. I n  order to increase the stability of the difference equations the nonlinear 
terms are treated by a second upwind differencing technique. This is really a statement 
of the Cauchy-Kelvin-Helmholtz law that vortex lines move with the fluid and, instead 
of taking space derivatives at a point in the nonlinear terms, they are taken slightly 
upstream. The vorticity is stored at two time levels and a Dufort-Frankel substitution 
is made in the time derivative and viscous terms. These techniques are well described 
by Roache (1972). Our fine mesh contained 410 points and the coarse mesh 210. This 
mesh size restricted the non-dimensional time step to 10-4 to depending on a2 and 
St. The solutions were obtained on a PDP 11-34 computer and a typical run from 
t = 0 until t = 1.5 would take about 5-10 hour!. In  those cases where the flow is 
inertially dominated the solution for t = 0-5 until t = 1.5 would be an accurate sample 
of a general cycle. If viscous effects dominated there would still be asymmetry in the 
time cycle due to the starting conditions (the flow starts from rest but thereafter at 
the instant of zero mean flow there is considerable motion in the fluid). Calculations 
were performed using single-precision arithmetric as comparison runs using double 
precision had shown no appreciable improvement in accuracy. The Poisson equation 
for the stream functions was solved by using pointwise over-relaxation. Our aim was 

$.I,=, = 4 z = L  

w I , = o  = OI.=L.  
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the systematic study of the fluid dynamics and having obtained a mesh size that 
worked we have not performed calculations involving variation of the numerical 
parameters, rather we have concentrated on variation of the physical parameters. 
We also have a variation of the program in which the nonlinear terms are deleted. 
This enables solutiom of the unsteady Stokes equations to be obtained. Comparison 
of the Stokes solutions with the full solutions is useful in showing whether inertial 
effects are important. 

One point of uncertainty in numerical calculations has been the treatment of 
boundary vorticity a t  a corner. Roache (1972) details several different methods that 
have been used. Following a suggestion by Lighthill (1977, private communication) 
we considered a boundary shape given by 

f(x) = 1 + to( 1 - cos ( 2 n x l L ) )  

and a boundary shape given by 

0 < x < Qxw, L-gx, < 2 < L, 
f ( x )  = {I arc of a circle x,/2 < x < L - x w / 2 ,  

where 5, represents the strut width which has adjusted so that the corners did not fall 
at a grid point. In  both cases the fundamental structure of the flow field was the same. 
The later case is relevant to the oxygenator design and the results in 3 5 are for this 
boundary shape. The results in 0 3 and $ 4  are for the sinusoidal geometry. Further in 
both cases the point about which the length L and depth D are varied is taken to be 
that of the oxygenator; L = 8, D = 2. 

In  order to have an idea of the strength of the vortex in the furrow we have defined 
the vortex strength to be the difference between the maximum value of the stream 
function and the value at the wall (or minimum if the wall stream function value is 
negative). 

3. Steady flow 
We use two different methods to obtain solutions for steady flow through a furrowed 

channel. In  0 3.1 we present numerical solutions of the Navier-Stokes equations. These 
solutions were obtained by solving the unsteady equations with constant boundary 
conditions. In  particular the boundary condition on the stream function was 

sin 2nt 0 < t < 0.25, 

t 2 0.25. 

Thus we imposed a gradual acceleration to  peak flow conditions and subsequently 
kept the flux through the channel constant. In  0 3.2 we use the method of Smith (1976) 
to  obtain an approximate solution that is valid in the limits of large Reynolds number 
and small change in channel width. We have compared the two solutions both to 
verify the numerical solution and to confirm the applicability of Smith's analysis. 

3.1. Numerim1 solution of the steady equations of motion 
Consider a sinusoidally varying wall shape where the furrows have physical dimen- 
sions L = 8 and D = 2. At low Reynolds number the flow does not separate and the 
fluid streams through the hollow, largely following the wall shape (see figure 3 a ) .  As 
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FIGURE 3. Streamlines for steady flow as the Reynolds number varies. (a) Re = 0;  (a) Re = 6; 
( c )  Re = 15; ( d )  Re = 75; ( e )  Re = 150; (f) Re = 600. 

the Reynolds number increases, inertial effects become important until a t  Re = 5 a 
small separated region exists midway along the upstream wall of the hollow (figure 3b) .  
Further increases in the Reynolds number cause the separated region to enlarge until 
a t  Re = 15 it fills the major part of the hollow (figure 3c) .  At larger Reynolds numbers 
the vortex grows further, the centre shifts downstream in the hollow and the vortex 
bulges into the mainstream. At even higher Reynolds numbers the vortex will separate 
from the upstream wall and a small counter-rotating vortex forms on that wall 
(figure 3e) .  The occurrence of a second counter-rotating vortex has been predicted by 
Snuggs (1977) for a semi-cylindrical hollow. 

In  figure 4 we show the variation of the boundary vorticity with Reynolds number. 
At  zero Reynolds number the vorticity is symmetrically distributed about the hollow 
centre. As the Reynolds number increases the vorticity decreases in the upstream 
section of the hollow and separation occurs. As the separation region increases in size 
a marked peak occurs in the vorticity at the wall in the hollow. A spatial oscillation 
in the wall vorticity occurs on the upstream wall and eventually this leads to separation 
of the vortex. The maximum vorticity occurs just before the end of the hollow. The 
maximum value of the stream function is shown in figure 5. As the Reynolds number 
increases from 5 to 30 there is a rapid increase in the stream function maximum but 
thereafter the rate of increase drops. 

If the hollow length is varied whilst the depth is kept constant the maximum value 
of the stream function increases at first, but near L = 10 there is a small maximum in 
the vortex strength (figure 6 ) .  At large L we do not expect a separated region, and we 
show below that modern boundary-layer theory predicts this, and thus there will be a 
decrease in the vortex strength as L increases. Varying the hollow depth whilst 
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FIGURE 4. Variation of wall vorticity with Reynolds number. (a) Re = 0 ;  
( b )  Re = 5 ;  ( c )  Re = 15; (d) Re = 7 5 ;  (e )  Re = 150. 
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FIaTJRE 6. Stream function maximum v e r w  furrow length in 
steady flow with D = 2 and Re = 75. 
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FIGURE 7. Effects of hollow depth on steady flow. (a) D = 0.25; ( b )  D = 1 ; ( c )  D = 2 ;  (d) D = 5; 
(e) vorticity at apex of furrow as D varies. All calculated a t  Re = 75 and L = 8. 

keeping the length constant leads to a second (and third, etc.) vortex occuring in the 
deepest part of the hollow. In  figure 7 we show the streamlines for D varying between 
4 and 5.  The second vortex appears a t  D = 2.8; in figure 7 ( e )  we show the variation of 
boundary vorticity a t  the apex of the hollow, and this shows the occurrence of a 
second (and presumably third, etc.) vortex in the deepest part of the hollow. 

The behaviour of the boundary vorticity as the hollow depth increases is shown in 
figure 8. For small D the separated region is absent, fist appearing at  D rz: 0.4. The 
second vortex is indicated by positive vorticity near the centre of the hollow. 

3.2. Modern boundary-layer solution 
A great advance in boundary-layer theory was achieved by Stewartson & Williams 
(1969) who showed that if a correct ratio of longitudinal to lateral length scales was 
chosen then it was possible to analyse disturbances to a boundary layer. Recently 
Smith in a series of papers (e.g. Smith 1976) has shown how the ideas of Stewartson & 
Williams may be applied to internal flows. Although in the classical sense there is no 
boundary layer at the walls in an internal flow, Smith has shown that the Navier- 
Stokes equations may be reduced to a boundary-layer equation. Even though the 
triple dcck structure of Stewartson and Williams has been lost the underlying philo- 
sophy, the correct choice of lateral and longitudinal length scales, remains. In this 
section we present solutions to the equations developed by Smith and compare them 
to solutions of the full Navier-Stokes equations. 
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FIaum 8. Wall vorticity as furrow depth increases. (a) D = 0.25; 
( b )  D = 1;  ( c )  D = 2; (d )  D = 5; (e) D = 6 .  

In  the symmetric channel Smith (1976) has shown that we should consider the 
boundary to be perturbed on a scale Re-*e-*h in the 4 direction and Re-k-ih in 
the 9 direction, where e = o(Re-*). There will be two regions of interest, a core flow in 
which 0 < z < 1, and a viscous layer adjacent to the wall, 1 - y = O(s-*Re-*) where 
y = Q/h. A symmetrically indented channel leaves the core velocities unperturbed to 
first order whilst the pressure has a perturbation of O(e-l). The pressure perturbation 
will be independent of the lateral variable (y) and depend only on the longitudinal 
one (x). Define the scalings 

x = Re-&-t( 
and 

1 - y = Re-k-*g; 

then Smith (1976) has shown that the solution near the wall has leading-order terms 

u = Re-*e-)U((, c), 
v = Re-biV((, c), 
r, = .-1P((). 

U ,  V and P satisfy the equations 
au av o, at ac 
-+- = 

and 
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together with the boundary conditions 

U =  VEEO on g = H F ( c ) ,  

where F is given by the boundary shape 

Q = f R e - k g H h  F ( s )  

and in this case is a periodic function 

for integer n, and 
P(5) = F ( t + n )  

U + $ c  as c j -00 .  

1 1  

We replace the condition of Smith regarding i3Ulay as 5 + - 00 with a periodicity 
condition. We also note that, in the core, the unperturbed flow is 

u 9(1 -Y2), 
as we have chosen in tj 2 to have unit flux through each half channel. Apart from these 
minor points the formulation follows Smith (1976).  

A method of solution of the boundary-layer equations has been given by Smith 
(1974) and we have used that method to obtain solutions, starting from U = 45 at 
f [  = 0 and marching forward in the 5 direction. We found the solution in only the 
second hollow closely satisfied the periodicity condition, demonstrating the lack of 
upstream influence in symmetrically indented channels. Using the sinusoidal boundary 
geometry of 9 2 we have 

and the physical parameters are given by 

F(6) = Q( 1 - cos 277.3, 

D = e-*Re-*H, 

whence 
L = s-gRe-*H, 

/HI = D R e i L 4  and E = Re-*L-*. 

We have compared the two solutions, boundary-layer and full numerical, a t  Re = 75,  
a relatively large intermediate Reynolds number. Choosing L = 8 then E = 0.06 
whilst H = 2.13580. In figure 9 we show the boundary vorticity calculated from tho 
two solutions for hollows of depth 4 and i. Figure 10 compares the streamlines for 
the later case. The agreement is striking and the boundary-layer theory predicts the 
qualitative features of the flow very well, This can only increase the confidence one 
feels in using the theories of Smith. In  this example our calculations show that separa- 
tion occurs if 

ReiL-iD > 0-795, 

i.e. if the Reynolds number is large, the hollow short or deep, all of which agrees with 
our physical intuition. Further for the case Re = 75,  L = 8 this theory gives separation 
if D > 0.38. In  our solutions to the steady Navier-Stokes equations we found a 
separated region existed if D M 0.4,  and thus excellent agreement is obtained between 
the two solutions. 
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FIGURE 9. Comparison of wall vorticity calculated from asymptotic theory of Smith (-) and 
from numerical solution of steady Navier-Stokes equations (- - -) at a Reynolds number of 75. 
(a) D = 0-26; ( b )  D = 0.5. 

FIQURE 10. Comparison of streamlines a t  Re = 75 calculated: (a) using the theory of Smith; 
( b )  from the Navier-Stokes equations. 

4. Unsteady flow 
Unsteady flow through a furrowed channel can be characterized by at  least five 

parameters, the pulsatile Reynolds number (a2), the Strouhal number (St), the hollow 
length (L), depth ( D )  and the time history of the flow. We shall assume that the flow 
starts from rest and develops as an oscillatory flow. On the boundary x = 1 the 
streamfunction is given by 

@ = sin 2nt. 

In  this case we are left with two physical parameters, the pulsatile Reynolds number 
and the Strouhal number and two geometric parameters, the Iength and depth of the 
furrow. As in the steady flow case we chose to vary L and D about the values charac- 
teristic of the oxygenator. One other point concerns notation. Historically separation 
refers to a separated bounda,ry layer. We choose a slightly different meaning and say 
that if at any point the wall vorticity has opposite sign to the flux through the channel, 
the flow has separated. As we show below separation in this sense may occur when 
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either inertial or viscous effects dominate and in an external flow one would refer to a 
mpamted boundary layer or a reversing Stokes layer. This definition of separation 
allows us to define a global parameter, the time of separation of the flow. 

4.1. Structure of the flow cycle 
Previous experiments by Bellhouse et al. (1973) and Bellhouse & Snuggs (1977) have 
shown that vortices are observed in furrowed channels. Snuggs (1977) observed 
vieually with the aid of small particles that during an acceleration from rest a vortex 
could be set up in a semicircular hollow adjacent to a semi-infinite region. During a 
subsequent deceleration to rest he observed that the vortex violently expanded out of 
the hollow, the flow nevertheless remaining laminar. Stephanoff et al. (1980) have also 
observed vortex motion in furrowed channels and considered the conditions in which 
vortices are established in the furrows. In  this section we shall present a generalized 
view of the flow pattern assuming a vortex is set up in the furrow. Subsequently to the 
calculations of this section Stephanoff et al. (1980) have shown using photographs of 
particle paths that the patterns presented here are indeed observed. We defer until 
later the consideration of those flows which do not result in a vortex forming in the 
f m w .  

At the start of an acceleration from rest the fluid streams through the channel 
following the wall shape. In  the vicinity of the upstream wall there will be two major 
idluences on the fluid motion. The expansion of the channel cross-section and the 
resulting deceleration of the fluid will cause a pressure gradient which opposes the 
fluid motion. Acceleration of the fluid results in a pressure gradient in the opposite 
sense. Initially the acceleration will control the pressure gradient and prevent sep- 
aration but because the total flux continues to  increase and the acceleration rate 
decreases separation may occur. This can be illustrated by ignoring any vorticity 
present in the free stream and considering unsteady irrotational flow through a 
channel. If the irrotational flow potential per unit volume flux were @(z, y ) ,  then the 
potential with volume flux q(t) would be q(t) @(z, y )  and the pressure gradient along 
the wall would be 

The firat term is negative for an accelerating flow and the second term is positive in a 
region of expanding cross-section. Hence separation would not occur provided 

a w  
stq > -42- as2 - 

See, for example, Lighthill (1963) who showed that the pressure gradient is the vorticity 
source strength and that separation is impossible where the vorticity source strength 
is positive but tends to occur shortly after the vorticity source strength becomes nega- 
tive. This suggests that the ratio 

s = Sty/( - q2@,,) 

should everywhere satisfy a criterion S > Scri t ,  where Scr i t  is a bit less than 1, if 
separation is to be avoided. 

As the acceleration rate decreases and the flow rate increases this condition would 
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not be met and an adverse pressure gradient would occur at the wall causing the flow 
to separate. The separated region increases in size during the remainder of the accelera- 
tion and during the deceleration continues to increase in size. The vortex centre 
moves downstream in the furrow and the vortex bulges into the mainstream. The 
growth of the vortex during the deceleration is somewhat surprising. Apparently it is 
simpler for the fluid to effectively decrease the channel gap by increasing the size of the 
vortex than to decrease the velocity of the bulk of the fluid. It would be interesting to 
demonstrate this point by considering the energy required in the two different situa- 
tions! As the mainstream decelerates further the vortex continues to grow until just 
before the flow changes direction the fluid is flowing backwards along the wall and 
forwards in the centre of the channel. As the flux reverses the fluid near the wall has 
anticipated the flow reversal and the fluid now moves between the vortex and the wall, 
ejecting the vortex into the mainstream. The reversal of flow near a wall in a decel- 
erating flow is not uniisual; what is interesting is the effect on the vortex of the flow 
reversal. Subsequently the vortex disappears as fluid from it is gathered into the 
accelerating mainstream. A new separated region will then form in the furrow as the 
cycle continues. In  inertially dominated flows such as these there appears to be little 
influence on the formation of the separated region by the conditions at zero mean flow. 

Our calculations show that it is possible for the old ejected vortex to be still present 
when the new one forms. In  figure 11 we show a sequence of calculated streamlines 
for a2 = 0.75 and St = 0.01 which illustrate these flow patterns. In  figure 12 we show 
the boundary vorticity as time varies at the narrowest part of the channel and at 
the apex of the furrow. 

4.2. Time of’ separation 

We indicated above that we intend to use the time of separation as a global dependent 
parameter which characterizes the flow. If the geometric parameters are constant 
then the separation time (t,) will be a function of the pulsatile Reynolds number and 
the Strouhal number, 

In  any half cycle t, will have to satisfy 0 < t, < 0.5. Consider the values oft, on the 
lines cc2 = 0 and St = 0. If the pulsatile Reynolds number vanishes then we essentially 
have steady Stokes flow and there will be no separation. Thus on the line a2 = 0 
we also have t, = 0.5. If we now consider the line St = 0 then we have steady flow and 
furthermore, excepting at the point ae = 0, the Reynolds number will be sufficient to 
cause separation. Thus the line a2 > 0, St = 0 will have t, = 0. This leads us to the 
conclusion that the surface formed when t, is plotted against the pulsatile Reynolds 
number and the Strouhal number must have a singular fold near the origin. In  
figure 13 (a) ,  curve (i), we show the separation time as the Reynolds number varies for 
a small but finite Strouhal number (St = 0.01). It can be seen that there is a rapid 
transition from flows which separate in the acceleration phase to those which separate 
in the deceleration phase. In  figure 13(b) we show the line t, = 0.25 which divides 
flows that separate in the acceleration from those which separate in the deceleration. 
A most important point is that for Strouhal numbers which are less than 0.02 (approx- 
imately) the dividing line is straight and represents a Reynolds number of approxi- 
mately 5 .  Stephanoff et al. (1980) show that this same line can be shown to divide those 
flows which appear to have vortices formed in the furrows from those which do not. 

t ,  = ts(cc2, St) .  
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h u m  11. Streamlines for unsteady flow through a furrow. Calculated at uB = 0.75, St = 0.01, 
L = 8 and D = 2. (a) t = 0.1; (b)  t = 0.25; (c )  t = 0.45; (cl) t = 0.5; (e) t = 0-55; [f) t = 0.75. 
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FIUURE 12. Variation of wall vorticity in unsteady flow: (a) wall vorticity at z = 0; (b)  wall 
vorticity at apex of furrow. Calculated for ua = 0.75, St = 0.01, L = 8 and D = 2. 

In 0 3 we calculated that for this geometry steady flow separates a t  a Reynolds number 
of approximately 5 and these links enable us to explain the nature of the singularity 
at the origin of the a2, St plot of the separation time. At small Strouhal numbers, 
evidently of the order the flow is controlled by peak Reynolds number. If the 
peak Reynolds number is sufficient to cause separation in the equivalent steady flow 
then the unsteady flow will separate some time before the instant of peak flow; other- 
wise the flow is dominated by viscous effects. Further, in the region of small Strouhal 
number at  the instant of peak flow, the flow closely approximates the equivalent 
steady flow (that is steady flow at the peak Reynolds number). This is illustrated in 
figure 14 where we show the boundary vorticity for the case a2 = 0.75 and St = 0.01 
at time t = 0.25 and the case a2 = 3 and St = 0.04 a t  time t = 0.25. In  both cases the 
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FIGURE 13. (a) Variation of time of separation with pulsatile Reynolds number for (i) 8t = 0.01, 
(ii) St = 0.02, (iii) St = 0.1. (b)  Dividing line between flows that separate in the acceleration 
(t, < 0.25) and those that separate in the deceleration (t, > 0.25). 

FIGURE 14. Wall 
and hollow 
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vorticity at the instant of peak flow, calculated for a Reynolds number 
depth 2. -, St = 0.01 ; -. -. -, St = 0.04; - - -, steady calculation. 
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instantaneous Reynolds number is 75. Comparison with the steady flow at Reynolds 
number of 75 shows that indeed close agreement exists at  small Strouhal numbers 
between the steady flow and the unsteady peak flow. This behaviour indicates that a t  
small Strouhal numbers the flow has some quasi-steady characteristics. The ocburence 
of separation is dependent only on a critical Reynolds number and at the instant of 
peak flow the flow closely resembles the steady flow solution. However, there are some 
features which cannot be described by quasi-steady theory. During the deceleration 
the vortex grows in size. A naive use of quasi-steady theory would indicate that the 
vortex should decrease in size as the mainstream decelerates. This does not happen. 
To examine the nature of the flow development during the acceleration we return to 
the ideas of 0 4.1. There it was shown that quasi-steady potential theory predicted 
the inhibition of separation when 

S > S c r i t  

and where Scr i t  is a little less than one. In the case of a slender channel of length L and 
depth D we can approximate the potential velocities by 

and 

- $+o( ( : )~ ) .  

These estimates are very crude but as we shall show they are sufficient for our purposes. 
The velocity along the wall is given by 

q = (u2 + @)*, 
thus 

The arc length along 

and hence, using 

we obtain 

the wall is 

= Jox(i + f ' 2 )  dx, 

Using the results of our numerical experiments we have calculated the value of S as 
the Strouhal number and the Reynolds number vary. The values are shown in table 1.  
The values of S should be treated with some caution as the discrete nature of the grid 
only allows approximate determination of the position of separation. It can be seen 
that at low Strouhal numbers the value of S a t  which separation occurs is remarkably 
constant (and less than 1)  and this supports the idea that at small Strouhal numbers 
the flow initially develops in a quasi-steady manner. We have also shown that as 
q 3 0 (peak flow) the instantaneous unsteady solution tends to the steady solution 
at the peak Reynolds number. This allows us to conjecture that the flow is indeed 
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Re = 75 
St 
Re1 
XI 
s 

st 
Re1 
XI 

Re = 30 

S 
St = 0.01 

Re 
Re, 
XI 
S 

0.001 
15-4 
1.9 
0.66 

0.001 
7.9 
2.2 
0.59 

G 
5.5 
2.2 
0.43 

0.005 
31.1 

1.7 
0.61 

0.005 
13.6 
1.9 
0.61 

30 
17.9 
1-8 
0.57 

0.01 
42.2 

1.6 
0.67 

0.01 
17.9 

1.8 
0.57 

75 
42.2 

1.6 
0.57 

0.02 
55.3 

1.5 
0.49 

0.02 
22.9 

1.7 
0.51 

100 
55.2 

1.5 
0.54 

0.04 
68-3 
1.4 
0.37 

0.04 
27.8 

1.8 
0.38 

150 
82.0 

1.5 
0.55 

TABLE 1. Computed values of the Reynolds number at  separation Re,, the position of 
separation (S,) and the function S for a hollow of length L = 8 and depth D = 2. 

developing throughout the cycle in a quasi-steady manner. Thus even though we 
cannot a t  present write down an analytic description of a quasi-steady separated flow, 
there are two separate influences on the development of the vortex, one behaving like 
q and representing the unsteady effects and another related in some unknown fashion 
to the equivalent steady solution. 

As the Strouhal number increases the ‘singularity’ in the time of separation surface 
decreases and this can be seen in curves (ii) and (iii) of figure 13 (a)  where we show the 
variation oft, with Reynolds number. POI Strouhal numbers of the order 0-1 and larger 
the flow never separates in the acceleration phase. This means that a t  these Strouhal 
numbers the viscous terms in the equations are of sufficient importance to dominate 
the nonlinear inertial terms even at high Reynolds number. As the Strouhal number 
becomes very large we will obtain the unsteady Stokes solutions and the calculations 
presented in $4.4 indicate that for Stokes flows separation always occurs late in the 
deceleration and never in the acceleration. 

4.3. Variation of the geometric parameters 

In  addition to the two physical parameters there are two geometric parameters, the 
furrow length L and depth D. In 9 3 we demonstrated that in steady flow it is possible 
to have successive vortices in deep furrows. This is also true if the flow is unsteady. 
Separation occurs further upstream than in a shallow furrow, a result of the increased 
width of the channel. The separated region enlarges and a primary vortex is formed in 
the furrow. The primary vortex then separates from the downstream wall near the 
apex of the furrow forming a secondary counter-rotating vortex at the apex of the 
furrow (see figure 15). As the,mainstream decelerates the primary vortex enlarges and 
as the flow reverses is ejected from the furrow whilst the secondary vortex remains a t  
the apex of the furrow. Viscous action then causes the secondary vortex to enlarge as 
the mainstream accelerates. The original vortex is eliminated as fluid from it is taken 
up by the mainstream. The vortex in the furrow then separates near the apex of the 
furrow and the pattern repeats itself. 

If the hollow length is varied we again find a small maximum in the vortex strength 



On flow through a furrowed channel. Part 1 19 

FIGURE 15. Streamlines for unsteady flow through a deep hollow, calculated at a2 = 0.75, 
St = 0.01, L = 8 and D = 5. (a) t = 0.15; ( b )  t = 0-25;  ( c )  t = 0.5;  (d) t = 0.55; (e) t = 0.75; 
(f) t = 0.95. 

4 8 10 12 L 

FIGURE 16. Variation of vortex strength at t = 0.5 with furrow length, 
calculated for a2 = 0-75, St = 0.01 and D = 2. 
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FIUUFLE 17. Streamlines for viscous flow. a* = 0.075; (a) t = 0.45; (b)  t = 0.5; a* = 7.6; 
(c) t = 0.39; (d)  t = 0.5. 

when L w 4 0 .  In  figure 16 we have plotted the vortex strength a t  the instant of zero 
mean flow against the length of the furrow at constant depth ( D  = 2). It is clear that 
both the steady and unsteady calculations indicate that a furrow length to depth ratio 
of 4 will give the strongest vortices in the furrows and if we suppose that strong 
vortices give good mixing then the choice of dimensions made by Bellhouse et al. 
(1973) is probably near optimum. 

4.4. The importance of viscous effects 
In  8 4.2 we indicated that the region in which strong vortices occur is primarily one 
in which the flow structure is dominated by inertial effects. In this section we shall 
consider the region in which viscous effects are of dominant importance. Our evidence 
for this comes from solutions of the unsteady Stokes equations of motion obtained by 
deleting the nonlinear inertial terms in our numerical scheme. The study of the viscous 
equations has a long history, particularly the study of oscillatory flow past a wavy 
surface. Yet the main purpose of previous studies [see, for instance, Lyne (1971) and 
Hall (1973)] has been the steady streaming induced by oscillatory motion past wavy 
surfaces. We do not consider the steady streaming problem but present the instant- 
aneous streamlines for both Stokes flows and for flows where the inertial terms are 
small but not negligible. These do not appear to have been set down before. 

If the pulsatile Reynolds number is small then the flow develops during the accelera- 
tion as a streaming motion through the channel. As the flow decelerates the slower- 
moving fluid near the wall is influenced most and flow reversal occurs near the apex 
of the furrow. In  the last stages of the deceleration the separated region enlarges as 
fluid flows backwards along the wall with a pattern similar to that found in inertially 
dominated flows. In fact the vortex strength in this case (figure 17) is 0.026, more than 
an order of magnitude less than the vortex strength of an inertially dominated flow. 
At large values of the pulsatile Reynolds number the flow pattern changes, separation 
occurring near the strut (figure 17c). The continued deceleration results in a re- 
circulation region about the strut (figure 17d). The line of separation for Stokes flow 
can also be obtained and in figure 18 we see that t,  decreases to a minimum near 
a2 = 0.6 and increases slowly thereafter. The flow never separates during the accelera- 
tion and this curve should be the limit St -+ oc) of the function ts(a2, St) .  

The importance of viscosity in the full Navier-Stokes equations is shown most 
clearly by calculating solutions at  equivalent values of the parameter 012. In  figure 
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FIQURE 18. Time of flow reversal for viscous flow, calculated for a 
sinusoidal furrow with L = 8 and D = 2. 

FIQW 19. Streamlines for solutions to the full Navier-Stokes equations a* = 0.075; St = 0.02; 
(a) t = 0-45; ( b )  t = 0.5; ae = 7.5; St = 1; (c) t = 0.39; (d )  t = 0-5. 

19(a) and 19(b) we show the flow streamlines when u2 = 0.075 and St = 0-02. Here 
the Reynolds number is 3.75 and this is outside the vortex mixing region described in 
$4.1. Clearly the flow could well be approximated by the solutions to the unsteady 
Stokes equations presented in figure 17 (a) and (b ) .  At a larger value of the pulsatile 
Reynolds number, a2 = 7-5 and St = 1, the flow patterns are again similar to those 
obtained from the Stokes equations (figure 19c and 19d). Apart from a slight asym- 
metry introduced by the inertial terms the flow patterns are identical. 

5. Flow in the Oxford membrane oxygenator 
5.1. BasicJlow patterns 

Regardless of whether the boundary geometry is sinusoidal or a series of furrows 
formed by arcs of circles the flow structure remains the same. Thus the ideas given in 
the preceding two sections are immediately applicable to the design of mass transfer 
devices using vortex mixing. Here we shall briefly demonstrate the closeness of the 
structure by giving the streamlines at identical times to those of figure 11 for a geo- 
metry typical of a membrane oxygenator. In  figure 20 we show the streamlines for 
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FIGURE 20. Streamlines for unsteady flow through a fuxrow whose shape is an arc of a circle. 
Calculated for a2 = 0.75, St = 0.01, L = 8, D = 2 and 2, = 0.255. (a) t = 0.1; ( b )  t = 0.26; 
(c) t = 0.45; (d) t = 0.5; (e) t = 0.55; (f) t = 0.75. 

a furrows channel in which L = 8 and D = 2 where in addition there is also a finite 
width to the ‘strut’ which could support a membrane forming the semicircular 
furrow. We have arbitrarily chosen the strut width to be 0.255. It can be seen that 
separation occurs at approximately the same time as for a sinusoidal wall and during 
the acceleration phase a small separated region forms in the upstream part of the 
furrow. During the deceleration the separated region enlarges and as the mainstream 
reverses the vortex is ejected from the furrow. We propose that the vortex formation 
and the subsequent behaviour of the vortex as the flow reverses results in the devices 
of Bellhouse et al. (1973) having high performance. During the acceleration fluid from 
the mainstream is moved into the hollow. The formation and growth of the vortex 
in the furrow results in good mixing of fluid within the furrow and should result in a 
higher mass transfer rate through the membrane than if diffusion processes alone 
acted. Then as the mainstream reverses the vortex is ejected from the furrow and 
there will be good mixing between the fluid in the furrow and the mainstream fluid. 
In  this process it is vital that a strong vortex forms in the furrow and the mainstream 
flow reverse, displacing the vortex into the mainstream. 

5.2. Time of separation 
I n  the design of high e% ciency mass transfer devices it is important to know the critical 
Reynolds number at  which vortex mixing occurs. We have seen in $4.2 that the time of 
separation changes dramatically a t  the critical Reynolds number as the flow character- 
istics change from viscous dominance to inertial dominance. To demonstrate how the 
critical Reynolds number varies we show in figure 21 the time of separation for three 
configurations. If L = 8 and D = 2 with a strut width of 0.51 the critical Reynolds 
number lies just below 5 in close agreement with the value obtained for sinusoidally 
varying channels. If now the depth of the furrow is decreased, to D = 1.5 the critical 
Reynolds number increases to a value just below 8. If on the other hand the length 
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FIQUIZE 21. Time of separation v e r m a  a2 for various configurations (a) L = 8, D = 2, X, = 0.225; 
(b) L = 8. D = 1.5, xw = 0.255; (c) L = 4, D = 1, x, = 0.1275, calculated for X t  = 0.01. 

22. Oscillatory flow with a small mean flow component (ij = 0.1), calculated at  a2 = 0.75 
and X t  = 0.01. (a) t = 0.75; (b)  t = 1.25. 

and depth are halved to L = 4 and D = 1 the critical Reynolds number increases to 
a value near 10. The changes in the critical Reynolds number are consistent with the 
idea that a change in configuration which reduces the likelihood of separation will 
increase the Reynolds number that must be achieved in order to have vortex mixing 
in a channel. 

5.3. Eflect of mean jlows 
In a practical mass transfer device there will be a mean flow superimposed on an 
oscillatory flow. Bellhouse et al. (1973) indicate that they used a mean flow of less than 
8 tenth the peak flow. It is important to know how a mean flow component affects the 
flow structure described above. We have modified the boundary condition on the 
stream function to 

sin 27rt 0 < t < 0.25, 

'''='= {ij+(l-q)sin2nt t > 0.25, 

in order to simulate a mean flow component. Thus there is a mean flow ij with a super- 
imposed oscillatory flow of strength (1 - @. 

If ij is small our calculations show that the basic mixing mechanism is likely to 
remain unaltered. In  figure 22 we show the stream function at t = 0.75 (peak reverse 
flow) and t = 1.25 (peak forward flow) for q = 0.1 at a2 = 0.75 and St = 0.01. In  the 
reverse flow cycle the vortex strength is reduced from 0.23 a t  peak forward flow to  
0.16; at peak reverse flow but the basic flow mechanism clearly remains. In  this case it 
would be appropriate to ensure that the peak Reynolds number of the reverse flow 
qole  is sufficient to cause vortex mixing. Alternatively if is large then small pul- 
mtiona superimposed on a relatively large mean flow do not displace the vortex from 
the furrow. In figure 23 the stream function is shown at the maximum and minimum 
flow and the only difference is that at minimum flow the vortex strength is 0.12 
w h e m  at peak flow it is 0.15. When the mean flow is of the same order as the oscillatory 
mmponent interesting effects occur. In  figure 24 wc show the case q = 0.55 when the 
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FIGURE 23. Oscillatory flow with a large mean flow component (jj = 0.9), 
calculated at a z = O . 7 5  and S t = O . O l .  (a) t=0*75;  ( b )  t=  1.25. 

FIQURE 24. Oscillatory unidirectional flow ( q  = 0.55) streamlines calculated for u2 = 0.75 and 
St = 0.01. (a) t = 0.75; ( b )  t = 0.8; (c) t = 0.85; (d )  t = 1-25. 

FIGURE 25. Oscillatory flow that just reverses (jj = 0.45), calculatod at a* = 0.75 and St = 0.01. 
(a) t = 0.75; (6) t = 0.84; (c) t = 0.86; (d )  t = 0.9; (e) t = 1.25. 

oscillation will have magnitude 0.45. This flow is unidirectional but with large changes 
in magnitude of the flow rate. In  figure 24 (a) a t  time t = 0.75, the instant of minimum 
flow, the vortex has grown to fill the furrow and bulges to the membrane. As the flow 
accelerates fluid flows into the upstream part of the furrow and begins to displace the 
vortex. As this process continues the vortex is eliminated from the furrow (figure 24b 
and 24c) and a new vortex is established in the furrow, shown in figure 24(d) a t  the 
instant of peak flow. If on the other hand the mean flow is small enough so that the 
flow just rererses the flow structure is even more complex. Suppose that a vortex 
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has been set up in the furrow whilst the fluid is flowing forwards. As the flow deceler- 
ates the vortex enlarges and the reversal of the fluid flux causes the vortex to be 
ejected from the furrow (figure 25a) .  Then the reverse flux begins to decrease and a 
second separated region occurs about the strut (figure 25b) .  The similarity of this 
with the large a2 behaviour of viscous-dominated flows leads us to suggest that the 
second separated region is essentially a viscous phenomenon caused by the deceleration 
of the reverse flux. As the flux becomes positive the main vortex reattaches to the wall 
(figure 25c) but continued acceleration of the mainstream lifts that vortex from the 
wall (figure 25d)  and eventually it is eliminated. The mainstream then separates and 
a new vortex forms in the furrow (figure 25e) .  

The complicated flow patterns that occur when a mean flow component is super- 
imposed on an oscillatory component make it difficult to give a simple explanation of 
mixing processes in such flows. If the mean flow component is small then the pattern 
of $5.1 is retained and convective mixing could still be achieved through vortex 
formation in the furrow and ejection into the mainstream. If the mean flow is large 
the vortex just pulsates in the furrow, there is little exchange between the mainstream 
and the furrow and we should not expect the mixing to be as efficient as if the mean 
flow was small. Between these two mean flow rates there is a region where the flow 
patterns make it impossible to decide a priori whether high or low convective mixing 
would be attained. 

6. Conclusions 
In dealing with a topic as complicated as the structure of solutions to the unsteady 

Navier-Stokes equations it is difficult to be both all encompassing and concise. We 
have attempted to show some of the details of the solutions which we believe are of 
relevance to an arbitrary oscillatory flow. Further we have only considered variation 

' of the governing parameters about values of interest in the design of high performance 
mass transfer devices. There are two areas of major importance that we have not 
covered. Firstly the region in which quasi-steady theory does not hold during the 
acceleration, yet the flow development is still primarily controlled by inertial effects. 
In terms of 9 4 this is the region in which the Strouhal number varies between 0.02 
and 0.1. The second region we have ignored is given by large values of the pulsatile 
Reynolds number. We would expect that a t  large Reynolds numbers the flow would 
be turbulent and presumably on the plot of a2 us. St there will be a second line other 
than that which divides laminar inertially generated vortices from viscous-dominated 
flows, a line that divides laminar vortices from turbulent motion. More likely there 
will be a region in which unsteadiness other than the imposed oscillation is evident and 
in which turbulence occurs as the pulsatile Reynolds number increases. Clearly many 
facets of the solution structure remain undiscovered. 

We have shown that for steady flow there is a critical Reynolds number that must 
be attained for the flow to be separated. In  unsteady flow, for small Strouhal numbers 
the flow development during an acceleration occurs in a quasi-steady manner. In  
order to have vortex mixing the peak Reynolds number must be sufficient to cause an 
equivalent steady flow to separate. The high efficiency of the devices of Bellhouse 
et al. (1973) is explained by a two-part cycle in which mixing occurs within the furrow 
and then between the furrow and the mainstream. A small mean flow superimposed 
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on an oscillation will have little effect on this mechanism. During a deceleration 
a separated region behaves in a distinctly non-quasi-steady manner and great care is 
needed in applying quasi-steady theory to a separated flow. In  a companion paper 
(Stephanoff et al. 1980) experimental evidence is presented which confirms the results 
presented here. 
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